WELCOME

DEPARTMENT OF PHYSICS

SAGARDIGHI K K S MAHAVIDHYALAYA

PROGRAMME OUTCOME (PO) & COURSE OUTCOME (CO)

DEPARTMENT OF PHYSICS

UG 4 YEAR PHYSICS (HONOURS/ HONOURS WITH RESEARCH)

(Under NEP 2020)

W.E.F. the Academic Session 2023-24

Programme Outcome (PO)-Course Outcome (CO)

Course Structure Physics (NEP-2020)-KU

	SEMESTER-I									
20 W	(A)		Class Credit of hours		Eva					
Course Code	Course Code Course Title Nature of Course Course		/ week	Interna l	Semester End	Total				
PHY-M-T -1	Mathematical physics- I	1000	_ /	13	,					
PHY-M-P-1	(4+2)	Major	6	6	15	60	75			
PHY-MI-T-1	Mathematical		- 14							
PHY-MI-P-1	Physics -I (3+1)	Minor	4	4	10	40	50			
PHY-MU-T-1	Physics in everyday life	Multidisciplinar yCourse	3	3	10	35	45			
PHY-SEC-T-1	Electrical circuit and network skills	Skill Enhanceme ntCourse	3	3	10	35	45			
		Value Added Course	4	4	10	40	50			
05	30 10	6	20	20	55	210	265			

Value Added Course will be common to all major

		SEMESTE	ER-II				
		3/4	Credit of	Class	Ev	Total	
Course Code	ode Course Title Nature of Course Course / week	/	Interna l	Semester End			
PHY-M-T-2		7	7,000				
PHY-M- P-2	Mechanics (4+2)	Major	6	6	15	60	75
PHY-MI-T-2	34	756				- 40	
PHY-MI-P-2	Mechanics (3+1)	Minor	4	4	10	40	50
PHY-MU-T-2	Weather forecasting	Multidisciplinar yCourse	3	3	10	35	45
	1/4	Ability Enhancemen tCourse	4	4	10	40	50
PHY-SEC-T-2	Basic Instrumentati onSkills	Skill Enhanceme ntCourse	3	3	10	35	45
1/10		Summer Internship	4	4		/80	33,3
05		70	20	20		165	265

Ability Enhancement Course will be common to all major

COURSE OUTCOME (CO)

S E M	COURSE CODE	CREDIT	CONTENT OF KU SYLLABUS	S. NO	COURSE OUTCOME (CO)
1 S T	PHY-M-T -1/PHY-M-P-1 Mathematical physics-I	4T+2P =6	❖ Calculus	01	CO 1. Various properties of function and series expansions of function are depicted here in detail. Differential equations up to second order as well as partial derivatives and their
V (0000)	PHY-MI-T -1/PHY- MI-P-1 Mathematical Physics -I	3T+1P =4	❖ Vector Calculus❖ Vector Integration	02	properties are mentioned in this section. CO 2. Different properties of vectors and their operations are mentioned. Vector differential operator and its role in various cases are
		1	Orthogonal Curvilinear Coordinates	03	represented here. CO 3. Integration of vectors and related basic theorems are discussed in detail.
		 Matrices Introduction to probability Dirac Delta function and its properties 	23/45	04	CO 4. Vector operations and vector differential operator are studied in different coordinates systems.
þ			❖ Dirac Delta	05	CO 5. Properties of Dirac Delta function and expressions of special functions as delta function are analyzed here
\ \alpha		Š	❖ Practical	06	CO 6. Computer Programme are developed to solve different numerical problems
	PHY-SEC-T-1	3	Basic ElectricityPrinciples	07	CO 01:Demonstrate knowledge of fundamental electric principal such as voltage, Current,

Electrical circuit and network skills	UnderstandingElectrical Circuits	Resistance, and Power. Ohm's law, Series, parallel, and series-parallel combinations. AC Electricity and DC Electricity. Familiarization with digital multimeter
	Generators and Transformers	os CO 02:Student will learn about Main electric circuit elements and their combination. Rules to analyze DC sourced electrical circuits. Current and voltage drop across the DC circuitelements. Single-phase and three-phase alternating current
		sources (principle of generation, output wave form, advantage of using three- phase).
	Electric MotorsSolid-State Devices	09 CO 03:Student will learn about DC Power sources (basic idea). AC and DC generators (basicprinciple of action). Inductance, capacitance, and impedance.
		10 CO 04:Student will learn about Single-phase, three-phase & DC motors. Basic design. Speed & power of acmotor.
	 Electrical Protection Electrical Wiring 	about Resistors, inductors and capacitors. Diode and rectifiers (half wave and full wave rectifier with L, C, L-C filter arrangement, regulation). Components in Series or in shunt. Response of inductors and capacitors with DC or AC sources.
		12 CO 06:Student will learn about Relays, Fuses and disconnect switches,

				13	Working principle of Circuit breakers, Miniature circuit breaker and its types. CO 07: Student will learn about Conduit wiring (basic idea of house hold wiring). Basics of wiring: Star and Delta Connections. Preparation of extension board, Wiring Materials
į				Á	(Basic information about the wiring components).
2 N D	PHY-M-T -2/PHY-M-P-2 Mechanics	4T+2P =6	Fundamentals of Dynamics □	14	CO 1.Fundamental properties of reference frames, Galilean transformations and dynamics of a system of particles are described.
			❖ Work and Energy□	15	CO 2.Basic descriptions of work, kinetic energy, potential energy, energy conservation law, conservative and nonconservative forces and work done by them are mentioned.
				16	CO 3.A detailed study of elastic and inelastic collisions between particles in different reference frames.
			 Collisions 	17	co 4. This topic helps learner to get a brief idea of angular momentum and its conservation principle, torque and moment of inertia. Students also learn how to calculate moment of inertia for different shapes
		S	Rotational DynamicsElasticity□	18	and kinetic energy of a rotational body. CO 5.Definition of elastic constants and relations between them are studied in detail with the calculation of twisting torque for a
			* Liasuoity	19	cylinder or wire. CO 6.Kinematics of moving fluids.

					\/\J	10075
			*	Fluid Motion	20	CO 7.Fundamentals of gravitation and a detailed study of motion of a particle under central force field are described.
	3		*	Gravitation and Central Force Motion	21	co 8. This topic helps students to solve the differential equation of simple harmonic oscillator for different cases like with and without damping force and with externally applied sinusoidal force. They also get a brief idea of
P. di	6n		*	□Oscillations	22	resonance, sharpness of resonance and quality factor. CO 9.Laws of Physics in rotating coordinate
			*	□Non-Inertial Systems	23	systems with development of Coriolis force and its applications are elaborately described. CO 10. A brief description of postulates of Special
			*	Special Theory of Relativity□		Theory of Relativity, Lorentz transformation, Lorentz contraction, time dilation, mass-energy equivalence, relativistic Doppler effect and four vector are introduced.
ja ja			*	Practical	24	co 11.Students learn some laboratory based experiments related to Mechanics. Ex -determine the moment of inertia,g by using bar or Kater's pendulum etc
<	PHY-MI-T - 2/PHY-MI-P-2 Mechanics	3T+1P =4	*	Laws of Motion:	25	CO 1: Utilize Newton's First Law to understand the concept of equilibrium and inertia.
			*	Momentum and Energy	26	CO 02:Apply Newton's Second Law to calculate forces, mass, and acceleration in various contexts.

*	Rotational Motion	27	CO 03: Interpret Newton's Third Law in terms of action-reaction force pairs and their implications for motion.
*	Non-Inertial	28	co 04: Students will learn about Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications.
	Systems	29	CO 05: Understand kinetic and potential energy, and apply the work-energy theorem.
*	Gravitation	30	CO 06: Calculate power and efficiency in mechanical systems.
*	Collisions	31	CO 07: Understand angular displacement, velocity, and acceleration.
1		32	CO 08: Apply the principles of SHM to springs, pendulums, and other oscillating systems.
*	Oscillations	33	CO 09: Students will learn about Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube. Euler's Equation. Bernoulli's Theorem.
*	Elasticity	34	CO 10: Students will learn about Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms

		*	Fluid Motion		of elastic constants - Work done in stretching
)	*	Special Theory of Relativity	35	co 11: Students will learn about Newton's Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's Laws (statement only). Satellite in circular orbit and applications
	6n	*	Practical	36	CO 12: Students will learn and develop their practical knowledge of Mechanics
	PHY-SEC-T-2 Basic Instrumentation Skills	3 *	Basic of Measurement	37	CO 01: Students will learn about Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects.
		*	Electronic Voltmeter:	38	CO 02:Students will learn about Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity
				39	CO 03:Students will learn about Type of AC millivoltmeters: Amplifier-rectifier, and rectifier-amplifier. Blockdiagram ac millivoltmeter, specifications and theirsignificance.
1000			Cathode Ray Oscilloscope	40	CO 04:Students will learn about Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only- no mathematical treatment), brief discussion on screenphosphor, visual persistence & chemical

	*	Signal Generators and Analysis Instruments	41	composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance. CO 05:Students will learn about Block diagram, explanation and specificationsof low frequency signal generators. pulse generator, and function generator.
6			42	CO 06:Students will learn about Block diagram of bridge. working principles of basic (balancing type) RLC bridge. Specifications of RLC bridge
	*	Impedance Bridges & Q- Meters	43	CO 07:Students will learn about Principle and working of digital meters. Comparison of analog& digitalinstruments. Characteristics of a digital meter.
	*	Digital Instruments Digital Multi meter	44	CO 08:Students will learn about block diagram and working of a digital multimeter. Working principle oftime interval, frequency and period measurement using universal counter/ frequency counter, time-base stability, accuracyand resolution.
			45	CO 09:Students will learn about Use of CRO for the measurement of voltage
	*	Practical	46	CO 10:Students will learn and develop their practical knowledge of Basic InstrumentationSkills

